Factors contributing to the temperature beneath plaster or fiberglass cast material

نویسندگان

  • Michael J Hutchinson
  • Mark R Hutchinson
چکیده

BACKGROUND Most cast materials mature and harden via an exothermic reaction. Although rare, thermal injuries secondary to casting can occur. The purpose of this study was to evaluate factors that contribute to the elevated temperature beneath a cast and, more specifically, evaluate the differences of modern casting materials including fiberglass and prefabricated splints. METHODS The temperature beneath various types (plaster, fiberglass, and fiberglass splints), brands, and thickness of cast material were measured after they were applied over thermometer which was on the surface of a single diameter and thickness PVC tube. A single layer of cotton stockinette with variable layers and types of cast padding were placed prior to application of the cast. Serial temperature measurements were made as the cast matured and reached peak temperature. Time to peak, duration of peak, and peak temperature were noted. Additional tests included varying the dip water temperature and assessing external insulating factors. Ambient temperature, ambient humidity and dip water freshness were controlled. RESULTS Outcomes revealed that material type, cast thickness, and dip water temperature played key roles regarding the temperature beneath the cast. Faster setting plasters achieved peak temperature quicker and at a higher level than slower setting plasters. Thicker fiberglass and plaster casts led to greater peak temperature levels. Likewise increasing dip-water temperature led to elevated temperatures. The thickness and type of cast padding had less of an effect for all materials. With a definition of thermal injury risk of skin injury being greater than 49 degrees Celsius, we found that thick casts of extra fast setting plaster consistently approached dangerous levels (greater than 49 degrees for an extended period). Indeed a cast of extra-fast setting plaster, 20 layers thick, placed on a pillow during maturation maintained temperatures over 50 degrees of Celsius for over 20 minutes. CONCLUSION Clinicians should be cautious when applying thick casts with warm dip water. Fast setting plasters have increased risk of thermal injury while brand does not appear to play a significant role. Prefabricated fiberglass splints appear to be safer than circumferential casts. The greatest risk of thermal injury occurs when thick casts are allowed to mature while resting on pillow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of pressure applied during casting on temperatures beneath casts.

BACKGROUND Burns and pressure sores are common injuries during cast application. Various factors such as water temperature, padding, and cast material layers may play a role in these injuries; however, the effect of cast molding on temperatures and pressures has not been investigated. This raises the following questions, does the application of molding during cast application: (1) alter skin le...

متن کامل

Cast-saw burns: evaluation of skin, cast, and blade temperatures generated during cast removal.

BACKGROUND The use of an oscillating saw for cast removal creates a potential for iatrogenic injury and patient discomfort. Burns and abrasions can occur from the heat created by frictional forces and direct blade contact. With use of a cadaver model system, skin temperature measurements were recorded during cast removal with an oscillating saw. METHODS Casts of uniform thickness were applied...

متن کامل

Effect of a Cast on Short-Term Reproducibility and Bone Parameters Obtained from HR-pQCT Measurements at the Distal End of the Radius.

BACKGROUND High-resolution peripheral quantitative computed tomography (HR-pQCT) is a promising tool to assess the fracture-healing process at the microscale in vivo. Since casts are often used during fracture treatment, they might affect the assessment of bone density, microarchitectural, and biomechanical parameters and the short-term reproducibility of those parameters, e.g., as a result of ...

متن کامل

Towards Better Control of Clubfoot Correction

Figure 1: Cast testing device set-up Table 1: Mean rate of change of angular displacement per interval. Figure 2: Mean angular displacement of three cast materials under the low torque. Towards Better Control of Clubfoot Correction +Cohen, T L; Smith, P; Altiok, H; Harris, G F +OREC, Milwaukee, WI, Department of Biomedical Engineering, Marquette University, Milwaukee, WI, Shriners Hospital for ...

متن کامل

Lower limb intracast pressures generated by different types of immobilisation casts

AIM To determine if complete, split casts and backslabs [plaster of Paris (POP) and fiberglass] generate different intracast pressures and pain. METHODS Increased swelling within casts was modeled by a closed water system attached to an expandable bag placed directly under different types of casts applied to a healthy lower limb. Complete fiberglass and POP casts, split casts and backslabs we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Orthopaedic Surgery and Research

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008